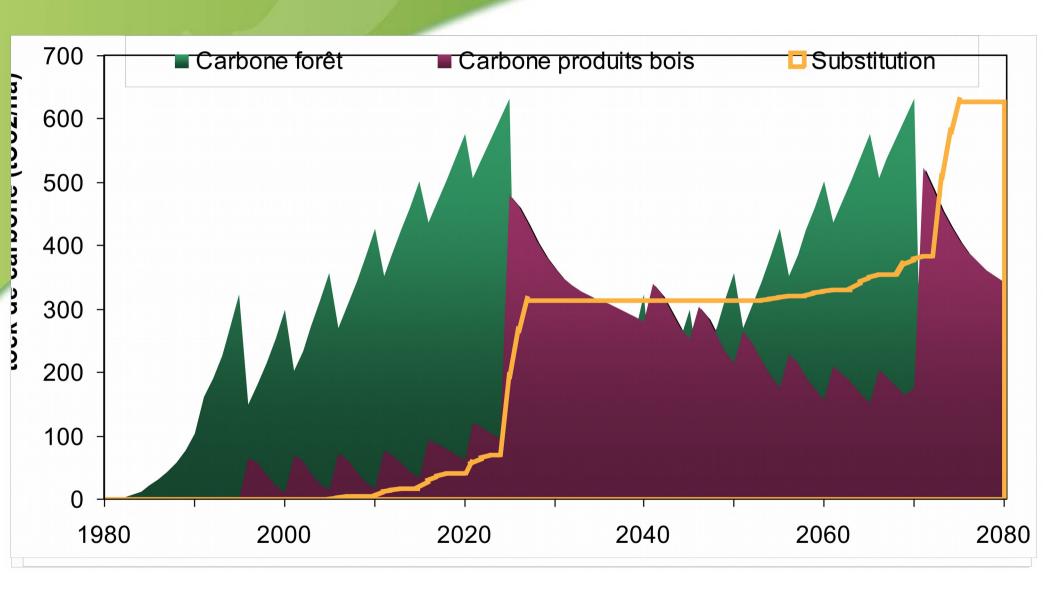
Bilan carbone du Pin maritime en contexte de climat changeant

Festival Woodrise - Stockage du carbone en forêt

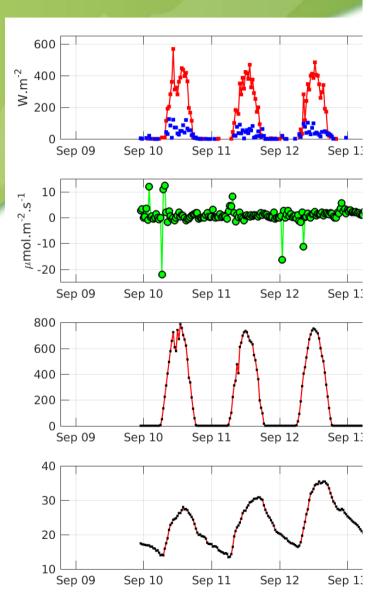

Mios, le 15 octobre 2018

Simon Martel

Institut pour le développement forestier

Dynamique des 3 « S » : modélisation


Suivi en temps réel du bilan carbone : site ICOS de Salles


Suivi en temps réel du bilan carbone

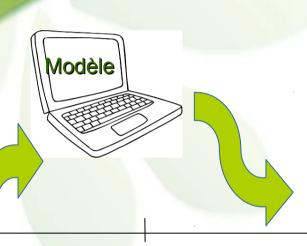
Source : données ICOS Salles. Lafont, Chipeaux, Loustau, 2016 https://xylofront.pierroton.inra.fr

Reprise de croissance après un stress

Stress hydrique prolongé:

La dissipation de chaleur se fait sous forme de chaleur sensible

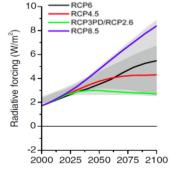
Il n'y a plus d'échanges de carbone : les stomates sont fermés


Source : données ICOS Salles. Lafont, Chipeaux, Loustau, 2016

Le projet Evafora : démarche

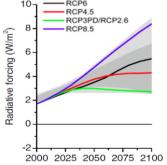
Douglas et Pin maritime

1. Calibration et validation du modèle GO+


> Jeux de données « historiques »

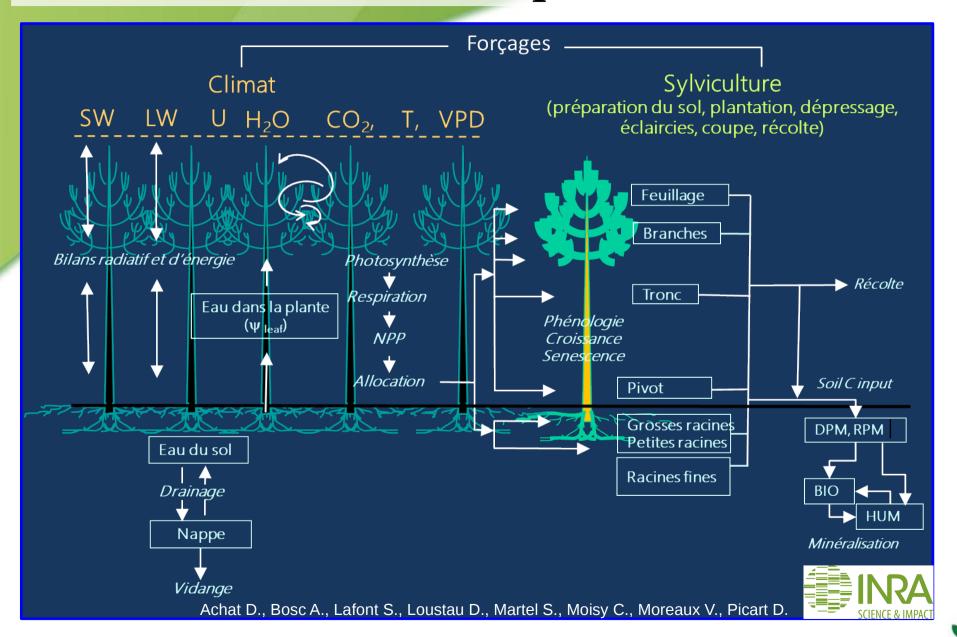
2017

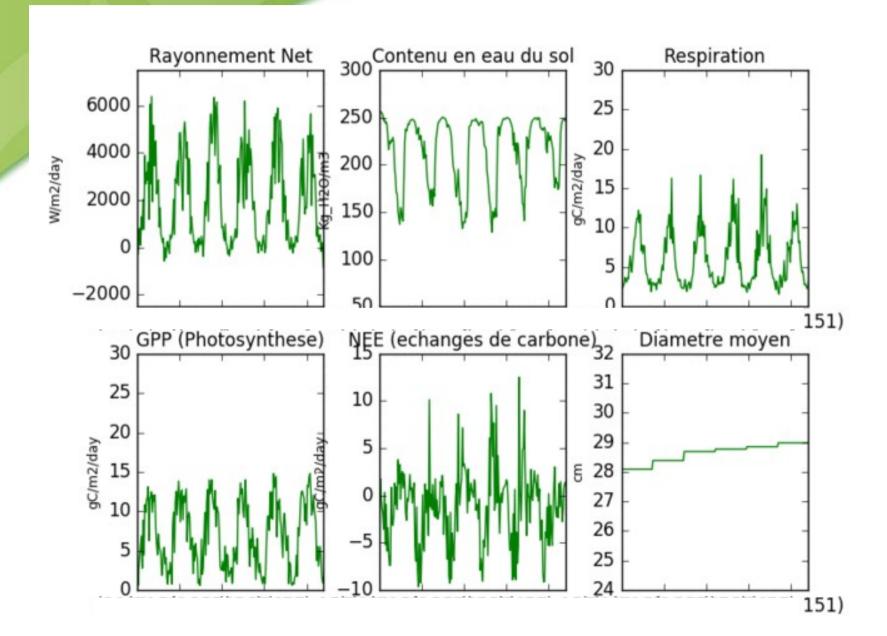
2. Définition des ITK avec les acteurs


86.6

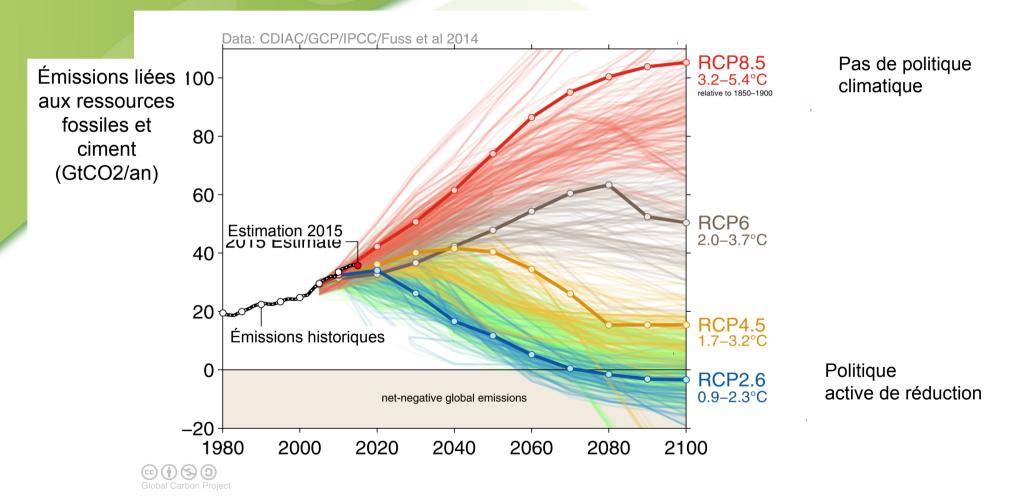
2100

Régions forestières (Landes de Gascogne et Haut Languedoc)



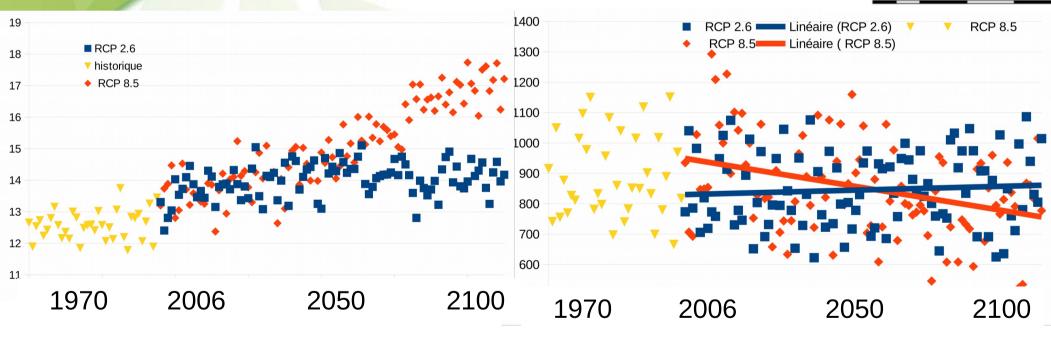


Un modèle à base de processus : GO+



Exemple de simulation

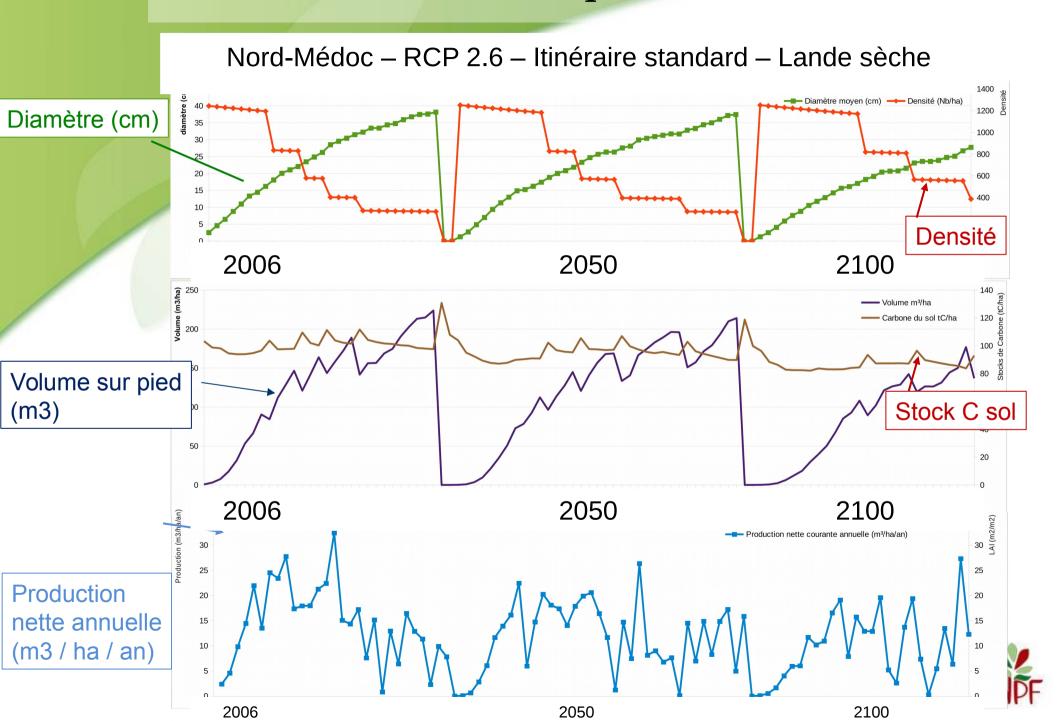
Scénarios d'émission



Projections climatiques

Température moyenne annuelle (°C)

Précipitations annuelles (mm/an)



<u>Pin maritime : itinéraires techniques élaborés</u> <u>avec les sylviculteurs, puis simulés</u>

	avant	(tiges/ha)								
Scénario			Débroussaillage		Débroussaillage, éclaircies (%tiges) et coupes rases (CR)				Compartiments récoltés à la	
	plantati on		5 ans 7 ans	10 ans	Circ = 55 cm	Circ = 70 cm	Circ = 85 cm	Circ = 100 cm	Circ = 120 cm	coupe finale
Standard 1 - S1	×	1250	×	×	30	30	30	30	CR	tronc
Standard 2 - S2	×	1250	x	x	30	30	30	30	CR	tronc+souche
Intensif 1 - I1	x	1250	×	X	30	30	CR			tronc+souche
Intensif 2 - I2	х	1250	x	X	30	CR				tronc
Semi Dédié - SD	×	2500	50		30	30	30	30	CR	tronc+souche
			5 ans 7 ans	10 ans	Circ = 55 cm	Circ = 75 cm	Circ = 95 cm	Circ = 115 cm	Circ = 150 cm	
Extensif - Ex		1250	X	X	30	30	30	30	CR	tronc

Pin maritime: exemple de simulations

Résultats: Productions annuelles brutes

RCP	Réserve Utile Max	Période	Extensif	Standard 1	Standard 2	Intensif 1	Intensif 2	Semi- dédié
	65	2006-2050	12.3	12.3	12.3	11.4	10.1	12.2
Réchauffe	25	2051-2100	8.9	11.1	11.1	10.3	9.5	10.8
ment	75	2006-2050	14.4	14.1	14.1	12.6	11.4	14.5
modéré : RCP 2.6	75	2051-2100	11.7	13.1	13.1	11.7	10.4	12.3
	125	2006-2050	16.1	15.7	15.7	13.7	12.8	16.1
	125	2051-2100	14.0	14.7	14.7	13.2	11.1	13.9
Réchauffe ment important : RCP 8.5	25	2006-2050	13.1	13.1	13.1	11.9	10.4	13.6
		2051-2100	10.4	12.7	12.7	11.6	10.4	12.0
	75	2006-2050	15.2	14.8	14.8	13.1	11.8	15.7
		2051-2100	12.7	14.5	14.5	13.1	11.5	13.0
	125	2006-2050	17.2	16.3	16.3	14.1	12.7	16.5
	125	2051-2100	15.0	16.2	16.2	14.2	12.3	16.4

Valeurs en m³/ha/an

Résultats: Productions annuelles brutes

RCP	Réserve Utile Max	Période	Extensif	Standard 1	Standard 2	Intensif 1	Intensif 2	Semi- dédié	Moy.
Réchauffe ment modéré : RCP 2.6	75	2006-2050 2051-2100	14.4 11.7	14.1 13.1	14.1 13.1	12.6 11.7	11.4 10.4	14.5 12.3	12.8
Réchauffe ment important : RCP 8.5	75	2006-2050 2051-2100	15.2 12.7	14.8 14.5	14.8 14.5	13.1 13.1	11.8 11.5	15.7 13.0	<u>13.7</u>

<u>Valeurs en m³/ha/an</u>

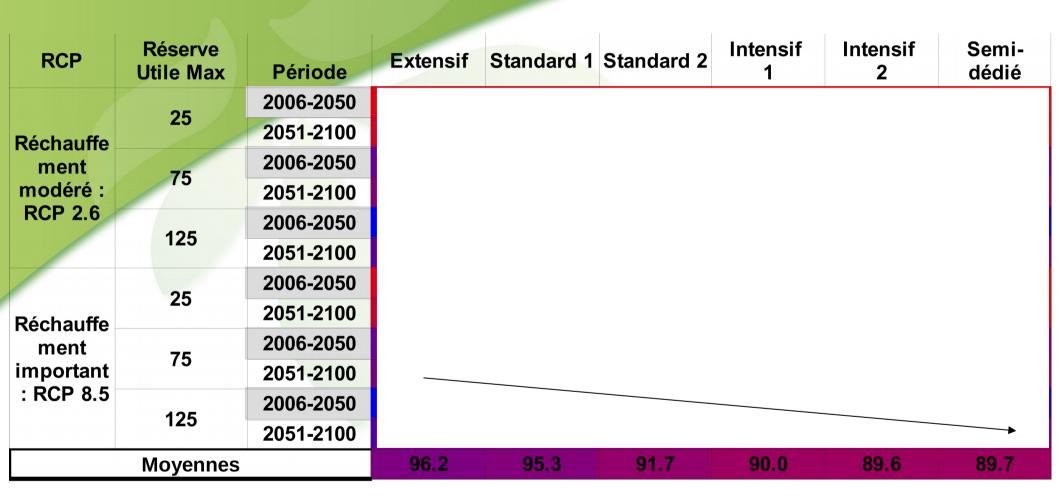
Réchauffement plus fort = Production plus importante → La « fertilisation CO2 » compense le stress hydrique !

Résultats: Facteur de stress

RCP	Réserve Utile Max	Période	Extensif	Standard 1	Standard 2	Intensif 1	Intensif 2	Semi- dédié
	25	2006-2050	0.51	0.46	0.46	0.42	0.39	0.46
Réchauffe		2051-2100	0.56	0.51	0.51	0.47	0.43	0.51
ment	75	2006-2050	0.44	0.38	0.38	0.35	0.32	0.40
modéré :	75	2051-2100	0.50	0.44	0.44	0.40	0.36	0.42
RCP 2.6	125	2006-2050	0.37	0.33	0.33	0.29	0.27	0.33
		2051-2100	0.43	0.37	0.37	0.34	0.29	0.38
	25	2006-2050	0.50	0.45	0.45	0.40	0.37	0.45
Réchauffe	25	2051-2100	0.64	0.57	0.57	0.52	0.47	0.56
ment	75	2006-2050	0.42	0.37	0.37	0.33	0.32	0.39
important : RCP 8.5	75	2051-2100	0.58	0.52	0.52	0.47	0.42	0.48
	405	2006-2050	0.35	0.30	0.30	0.27	0.26	0.30
	125	2051-2100	0.53	0.47	0.47	0.40	0.37	0.48

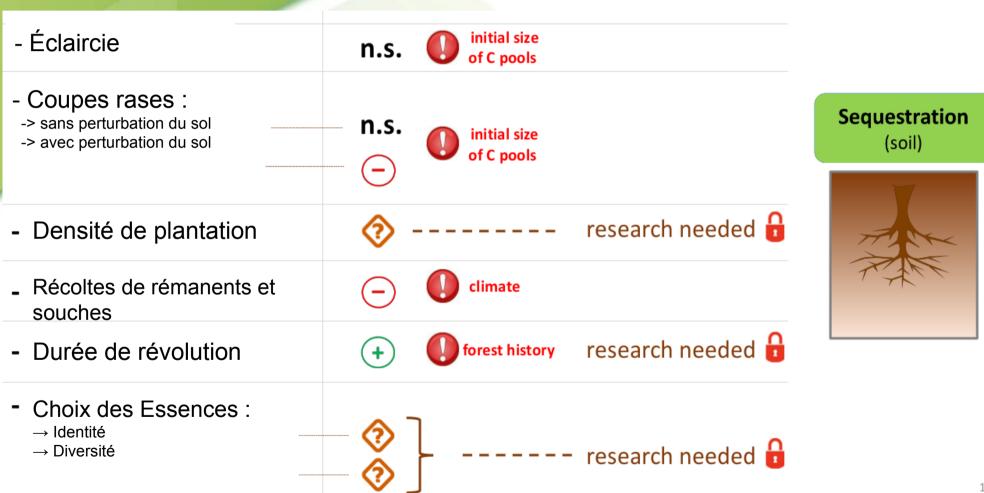
Résultats: Facteur de stress

Attention au stress hydrique!


Résultats: Productions annuelles brutes

							1	1
RCP	Réserve Utile Max	Période	Extensif	Standard 1	Standard 2	Intensif 1	Intensif 2	Semi- dédié
Réchauffe ment modéré : RCP 2.6								
Réchauffe								
ment	75	2006-2050	15.2	14.8	14.8	13.1	11.8	15.7
important : RCP 8.5	75	2051-2100	12.7	14.5	14.5	13.1	11.5	13.0
Variation 2é	moitié de s	siècle	<u>-16</u> %	<u>-2</u> %	<u>-2</u> %	<u>0</u> %	<u>-2</u> %	<u>-17</u> %

Les itinéraires semi-dédié et extensifs sont plus sensibles au stress


Résultats: Carbone du sol

Effet négatif de l'intensification sur le carbone du sol (labour et récolte des souches/rémanents)

Impact de la gestion sur le carbone du sol (L. Augusto, 2017)

Source: Augusto, 2017 (INRA)

Conclusion

- > Les itinéraires de non gestion sont les plus sensibles : la gestion sylvicole atténue l'effet négatif du climat
- > Le mode de gestion « standard » représente une option résiliente au climat
- La sylviculture de bois d'œuvre génère le meilleur bilan carbone
- > On cherchera à privilégier des stratégies gagnant-gagnant :
 - → atténuation et adaptation vont de pair
 - → optimisation conjointe des « 5S »
- > Attention aux pratiques néfastes pour le carbone du sol
- > L'utilisation en cascade du bois maximise le bilan carbone
- > Eco-efficience : limitation des émissions liées aux opérations, réduction des distances de transport (circuit court)

Merci pour votre attention

Personnes ayant contribué au projet EVAFORA:

David Achat. Alexandre Bosc. Patricia Braconnier. Nathalie Bréda, Miriam Buitrago, Amélie Castro. Christine Deleuze, Sébastien Drouineau. Mathieu Fortin, Henri Husson, Anne Jambois. Sébastien Lafont, Jean Lemaire, Elsa Libis, Denis Loustau. Cécile Maris, Magali Maviel, Christophe Moisy, Andoni Mugica, Alexandre Petroff, Olivier Picard, Delphine Picart, Lucie Rupil, Grégory Sajdak, Ingrid Seynave

